

NORME FIA 8872-2018 FIA STANDARD 8872-2018

ENREGISTREUR DE DONNEES D'ACCIDENT (ADR) ACCIDENT DATA RECORDER (ADR)

08.07.2021 Page 1 de 42

AVANT-PROPOS

La présente norme vise à fournir des exigences de conception et de performance objectives pour les nouveaux Enregistreurs de Données d'Accident (ADR) destinés à être inclus dans le Programme FIA ADR.

Un Enregistreur de Données d'Accident (ADR) est un dispositif électronique permettant de mesurer et d'enregistrer les données d'accident, incluant, sans s'y limiter, les accélérations à bord de la voiture le long de trois axes (X, Y et Z) – aussi appelées "forces-G". Le Programme FIA ADR soutient le déploiement global des dispositifs ADR en sport automobile.

Les données d'accident sont extrêmement utiles à la FIA. Elles permettent de mieux appréhender la cinématique des accidents ainsi que les mécanismes à l'origine des blessures. Les activités de R&D se fondent sur ces données pour améliorer les performances des systèmes de sécurité, ces améliorations étant mises en œuvre par le biais de nouvelles réglementations et directives.

1. GENERALITES

1.1 Procédure d'homologation

Tout fabricant faisant une demande d'homologation reconnaît avoir pris connaissance de la présente norme, du Règlement d'Homologation FΙΑ pour équipements de sécurité ainsi que de toute autre réglementation liée aux équipements de sécurité.

Les fabricants doivent s'engager formellement auprès de la FIA (via adr@fia.com) à déclarer leur intention de développer un système ADR qui soit conforme aux exigences de la présente norme. Avant de soumettre leur dossier de demande d'homologation, les fabricants doivent fournir le document contenant les spécifications techniques, notamment les informations requises conformément au modèle figurant à l'ANNEXE B. Les modèles d'ADR à homologuer doivent être testés par un laboratoire d'essais agréé par la FIA

FOREWORD

The aim of this standard is to provide objective design and performance requirements for newly developed Accident Data Recorder (ADR) systems that are intended to be included in the FIA ADR Programme.

An Accident Data Recorder (ADR) is an electronic device that is able to measure and record accident data, mainly, but not limited to, in-car accelerations along three axes (X, Y and Z) – also referred to as "G-forces". The FIA ADR Programme supports the global deployment of ADR devices in motorsport.

Accident data is highly valuable for the FIA; and is used to obtain a greater understanding of the accident kinematics and injury mechanisms. R&D activities build on this data to improve the performance of safety systems, which can be delivered through new regulations and guidelines.

1. GENERAL

1.1 Homologation procedure

Any manufacturer applying for homologation agrees to have understood this standard, the FIA Homologation Regulations for Safety Equipment, and any other regulations relating to the safety equipment.

Manufacturers are requested to formally engage with the FIA (via adr@fia.com) to declare their intent to develop an ADR system that meets the requirements of this standard. Before submitting homologation application dossier manufacturers shall submit the technical specification document, including information in accordance with the template in APPENDIX B. Models of ADR to be homologated shall be tested by a test house approved by the FIA and listed in the Technical List n°[TBA].

08.07.2021 Page 2 de 42

et répertorié dans la Liste Technique n° [A préciser].

Le dossier de demande d'homologation doit être soumis à l'ASN du pays du fabricant, qui demande l'homologation à la FIA. Le dossier de demande d'homologation est constitué par :

- le rapport d'essai, conforme au modèle et aux lignes directrices figurant à l'ANNEXE A;
- les résultats des essais (documentation et fichiers de données) conformément à l'ANNEXE E et l'ANNEXE F;
- des informations détaillées sur les procédures de contrôle qualité à mettre en place, y compris un programme complet des essais de contrôle qualité attendus à chaque étape du processus de production;
- un modèle d'étiquette FIA à utiliser.

Suite à une évaluation objective fondée sur les exigences de conception et de performance définies dans la présente norme, le dispositif sera soumis au Département de la Sécurité de la FIA pour une évaluation subjective finale. L'approbation finale de l'homologation dépendra de l'évaluation subjective.

Une fois l'homologation terminée, la FIA attribuera numéro d'homologation et répertoriera tous les systèmes ADR nouvellement homologués dans Liste Technique n° [A préciser], publiée sur le site Internet de la FIA (www.fia.com).

La FIA se réserve le droit de demander aux ASN concernées d'effectuer des contrôle qualité posthomologation sur des systèmes ADR choisis au hasard, conformément au règlement posthomologation. Elle se réserve également le droit d'annuler l'homologation si la demande s'avère incomplète ou si le système ADR soumis à des tests de qualité aléatoires se révèle non conforme à la norme requise. The homologation application dossier shall be submitted to the ASN of the country of the manufacturer, which shall apply to the FIA for the homologation. The homologation application dossier shall consist of:

- the test report, in accordance with the template and guidelines in APPENDIX A;
- test results (documentation and data files) in accordance with APPENDIX E and APPENDIX F;
- detailed information regarding the quality control procedures to be put in place, including a full programme of the quality control testing expected at each stage of the device's production process;
- a sample of the FIA label to be used.

Following an objective evaluation based on the design and performance requirements defined in this standard, the device will be submitted to the FIA Safety Department for a final subjective evaluation. The final homologation approval will depend on this subjective evaluation.

Following completed homologation, the FIA will assign a homologation number and will list all newly homologated ADR systems in the Technical List n°[TBA], published on the FIA website (www.fia.com).

The FIA reserves the right to require the ASNs concerned to carry out post-homologation controls according to the post-homologation regulations on ADR systems selected at random. It also reserves the right to cancel the homologation should the application prove to be incomplete or in the event of the ADR subjected to random quality tests being found to be non-compliant to the required standard.

08.07.2021 Page 3 de 42

1.2 Engagement du fabricant vis-à-vis de la stabilité de son produit

Une fois la demande d'homologation déposée, le fabricant s'engage à ne pas modifier la conception du produit, les matériaux, les programmes/logiciels et le matériel qui le composent, ni sa méthode fondamentale de fabrication.

2. DOMAINE D'APPLICATION

La présente norme constitue un moyen pragmatique, en s'appuyant à la fois sur des essais et l'opinion d'experts, de s'assurer que tout ADR homologué par la FIA fonctionnera de manière fiable et produira des données de haute qualité en cas d'accidents significatifs.

Bien que cette norme soit fondée sur une technologie traditionnelle, la FIA soutient les fabricants à la recherche d'autres solutions pour obtenir un niveau de performance supérieur ou égal. Si la procédure énoncée dans la présente norme est clairement définie, il n'est pas possible en revanche de définir les exigences précises relatives à chaque ADR de manière exhaustive car celles-ci sont susceptibles de varier d'un cas à l'autre. Il est par conséquent fortement recommandé au fabricant d'ADR de se rapprocher de la FIA dès le début du processus de développement afin de s'assurer que tout problème potentiel soit traité le plus tôt possible.

3. EXIGENCES DE CONCEPTION

La FIA se réserve le droit de refuser l'homologation si la conception et la fonction ne sont pas jugées acceptables.

Les exigences de conception répertoriées aux Articles 3.1 à 3.16 sont obligatoires uniquement lorsqu'elles s'appliquent à la technologie ADR pertinente. La FIA se réserve le droit de demander de plus amples informations si une nouvelle technologie est présentée pour homologation.

Si le système proposé est uniquement constitué d'un ou plusieurs accéléromètres, il doit être conçu pour être utilisé avec un

1.2 Manufacturer's undertaking for the stability of his product

When applying for the homologation, the manufacturer undertakes not to modify the design, materials, software, hardware and fundamental method of production of the product.

2. SCOPE

This standard provides a pragmatic way, by engaging both testing and the opinion of experts, to ensure that any ADR homologated by the FIA will operate robustly and provide high quality data during significant crash events.

Although this standard is tuned around traditional technology, the FIA is supportive of manufacturers exploring alternative approaches to achieve an equal or greater level of performance. While the procedure set out in this standard is well defined, the precise requirements for each ADR cannot be exhaustively defined and may vary on a case-bycase basis; therefore it is strongly recommended that the ADR manufacturer approaches the FIA early in the development process to ensure that any potential issues are addressed as soon as possible.

3. DESIGN REQUIREMENTS

The FIA reserves the right to refuse the homologation if the design and function are deemed unacceptable.

The design requirements listed in Articles 3.1 to 3.16 are mandatory only when applicable for the relevant ADR technology. The FIA reserves the right to request further information if a new technology is presented for homologation.

If the proposed system solely consists of accelerometer(s), it shall be designed for use with a recognised FIA logger. In such a case,

08.07.2021 Page 4 de 42

enregistreur reconnu par la FIA. Dans ce cas, seuls les Articles 3.1, 3.2, 3.6 (ii), 3.12 et 3.15 s'appliquent. La FIA pourra exiger du fabricant qu'il apporte son soutien pour la connexion et l'intégration du dispositif avec l'enregistreur FIA.

only Articles 3.1, 3.2, 3.6 (ii), 3.12, and 3.15 are applicable. The FIA may require the manufacturer to support the connection and integration of the device with the FIA logger.

3.1 Généralités

Le système et le logiciel ADR doivent :

- (i) Être complètement développés ;
- (ii) Mesurer et enregistrer des données d'accélération du châssis pertinentes lors d'un choc :
- a. Mesure des accélérations dues au choc ± 150 G MIN lorsqu'un filtre CFC60 est appliqué sur les données enregistrées;
- b. Réponse à la détection d'une surface de montage ± 1000 G MIN entre 0 et 3 kHz MIN sans repliement et <u>entre 1 kHz et</u> <u>3 kHz MIN sans</u> écrêtage. Le fabricant doit fournir la documentation attestant que son système respecte cette exigence (par ex. diagramme théorique ou simulation numérique).
- (iii) Mesurer et enregistrer selon 3 axes orthogonaux avec la convention de signes suivante (note : la convention FIA diffère de SAE J1733 – relative à l'axe Y <u>et</u> <u>Zuniquement</u>) :
- a. Axe X : accélération vers l'avant positive ;
- b. Axe Y: accélération vers la gauche positive;
- c. Axe Z: accélération vers le haut positive.

3.1 General

The ADR system and software shall:

- (i) Be fully developed;
- (ii) measure and record meaningful chassis acceleration data during an impact event;
- Measurement of impact accelerations ±150G MIN when applying a CFC60 filter on the recorded data;
- b. Sensing response of a mounting surface ±1000G MIN between 0 and 3kHz MIN without aliasing and between 1 kHz and 3 kHz MIN without clipping. The manufacturer shall provide the relevant documentation to show that their system conforms with this requirement (e.g. theoretical flow chart or numerical simulation).
- (iii) Measure and record in 3 orthogonal axes with the following sign convention (note: FIA convention is different from SAE J1733 – affecting the Y <u>and Z</u> axes only):
- a. X axis: positive forward acceleration;
- b. Y axis: positive left acceleration;
- c. Z axis: positive upward acceleration.

3.2 Accéléromètre

L'accéléromètre doit comporter :

- (i) Un préfiltre plafond de 1000 G MIN ou un filtre d'entrée pour éviter l'écrêtage des signaux comme précisé à l'Article 3.1 (ii) b.
- (ii) Une plage de mesures conforme à l'Article 3.1 (ii) b (exemples : ± 150 G pour 100 Hz filtre de sortie ou ± 250G pour 400 Hz filtre de sortie).
- (iii) Un gain de sensibilité inférieur ou égal à ±5 % sur les axes X, Y et Z pour la gamme

3.2 Accelerometer

The accelerometer shall have:

- (i) A prefilter headroom 1000G MIN or input filter to avoid clipping of signals as detailed in Article 3.1 (ii) b.
- (ii) A measurement range appropriate for achieving Article 3.1 (ii) b (examples: ±150G for 100Hz output filter or ±250G for 400Hz output filter).
- (iii) A gain sensitivity no greater than ±5% in the X, Y and Z axes over the full working temperature range of the ADR.

08.07.2021 Page 5 de 42

- complète des températures de fonctionnement de l'ADR.
- (iv) Un décalage zéro-g inférieur ou égal à ± 15 G sur les axes X, Y et Z pour la gamme complète des températures de fonctionnement de l'ADR.

(iv) A zero-g offset no greater than ±15G in the X, Y and Z axes over the full working temperature range of the ADR.

Note: la plus grande attention doit être de mise lorsque des capteurs de sortie numérique MEMS sont utilisés, afin de s'assurer que les exigences de Nyquist sont respectées pour le système complet.

<u>Note</u>: extreme care must be taken when using digital output MEMS sensors to ensure that as a complete system, the Nyquist requirements are fulfilled.

3.3 Anti-repliement, échantillonage et enregistrement

Une stratégie de filtrage anti-repliement répondant aux exigences minimales suivantes doit être mise en œuvre et appliquée aux trois canaux d'accélération :

- (i) Avant l'échantillonage du Convertisseur Analogique-Numérique (CAN), les filtres matériels doivent :
 - a. Être de type passe-bas uniquement ;
 - Fournir une atténuation globale de -30 dB MIN à la fréquence de Nyquist (moitié de la fréquence d'échantillonage);
- (ii) Taux d'échantillonage CAN 1 kHz MIN (note : supérieur ou égal à 2 kHz recommandé);
- (iii) Résolution CAN inférieure à 0,15 G/bit ;
- (iv) Avant l'enregistrement, les filtres logiciel doivent :
 - a. Être de type passe-bas uniquement ;
 - Fournir une atténuation globale de -30 dB MIN à la fréquence de Nyquist (moitié de la fréquence d'enregistrement);
- (v) Fréquence d'enregistrement : 1 kHz ;
- (vi) Atténuation combinée sur la plage 0 Hz- 100 Hz inférieure à 0,2 dB.

Le programme complet d'anti-repliement, d'échantillonage et d'enregistrement doit être communiqué conformément à l'Annexe B.

3.3 Anti-aliasing, sampling and logging

An anti-alias filtering strategy that fulfils the following minimum requirements shall be implemented and applied to the three acceleration channels:

- (i) Before Analog-to-Digital Converter (ADC) sampling, hardware filters shall:
 - a. Be low-pass only;
 - Provide an overall attenuation of -30dB MIN at the Nyquist frequency (half of the sampling frequency);
- (ii) ADC sampling rate 1kHz MIN (note: recommended equal or more than 2kHz);
- (iii) ADC resolution must be less than 0.15G/bit;
- (iv) Before logging, software filters shall:
 - a. Be low-pass only;
 - Provide an overall attenuation of -30dB MIN at the Nyquist frequency (half of the logging frequency);
- (v) Logging frequency 1kHz;
- (vi) The combined attenuation over the range between DC and 100Hz shall be less than 0.2dB.

The complete anti-aliasing, sampling and logging scheme shall be disclosed as per Appendix B.

08.07.2021 Page 6 de 42

3.4 Stockage et téléchargement des données

- (i) Le système doit :
 - a. Enregistrer les données en continu dans une mémoire de stockage des données non-volatile suffisante pour éviter le bouclage et la perte de données;

OU

- Adopter une stratégie permanente de sauvegarde de fichier fondée sur un algorithme de détection des accidents (voir Article 3.9), pour enregistrer un minimum de 20 événements de 30 s chacun (15 s avant le choc et 15 s après).
- Dans ce cas, le système doit revenir immédiatement à un état lui permettant d'enregistrer un autre événement. Par ailleurs, dans le cas où la mémoire du dispositif est pleine, le fichier le plus ancien stocké sur le dispositif doit être écrasé si un nouvel accident est détecté.
- La détection d'accident devrait reprendre 10 secondes avant l'achèvement du stockage permanent des événements. Si ces événements sont rapprochés, les données devraient s'adjoindre consécutivement, sans échantillons manquant ou dupliqué. Par exemple, si l'événement suivant est détecté entre 10 et 30 secondes après l'événement initial. événements deux seront stockés incluant toutes les données correspondantes à 60 s de temps écoulé.
- (ii) Le taux de transfert réel des données de l'ADR au PC doit être tel que le temps nécessaire pour télécharger une minute de données n'excède pas 15 secondes.
- (iii) Le système doit fournir des données téléchargées dans un format permettant d'afficher ces données et de les analyser avec un logiciel d'analyse de données PC existant (par ex. : .CSV, .ASCII).

Autrement, le fabricant doit fournir un logiciel d'analyse de données efficace et adéquat

3.4 Data storage and download

- (i) The system shall either:
- a. Continuously record data using sufficient non-volatile log data storage memory to avoid wrapping and losing data;

OR

 b. Utilise a permanent file-saving strategy using an accident detection algorithm (see Article 3.9), to record a minimum of 20 events of 30s each (15s before impact and 15s after).

In this instance, the system must be able to immediately revert back to a state in which it is ready to record another event. Additionally, in instances where the device's memory is full, the oldest file stored on the device must be overwritten if a new accident is detected.

Accident detection should resume 10 seconds before permanent storage of events will complete. If events are close together the data should be back-to-back with no missing or duplicated samples. For example if the next event is detected more than 10 seconds and less than 30 seconds after the initial event, two events would be stored that included all data from 60sec of elapsed time.

- (ii) The real data transfer rate from ADR to PC shall be such that the time to download a minute of data shall be no longer than 15 seconds.
- (iii) The system must supply downloaded data in a format such that the data can be viewed and analysed with existing PC data analysis software (e.g. .CSV, .ASCII).

08.07.2021 Page 7 de 42

- à la FIA et aux ASN sans frais supplémentaires.
- Les fichiers de données devraient être téléchargés depuis le dispositif dans un format permettant de les lire directement sans que des fichiers de configuration distincts ne soient nécessaires.
- (iv) La date et l'heure GMT de l'accident doivent être mesurées et enregistrées.
- (v) Les canaux de données respecteront les noms, unités et l'ordre tel que spécifié à l'Annexe C.
- (vi) Chaque nom de fichier doit automatiquement comprendre au minimum:
 - a. le numéro de série unique de l'ADR : par ex. "SNxxxx";
 - la date et l'heure au format suivant : aaaammjj-hhmmss.

Exemple: "SN7890-20160510-163324".

3.5 Alimentation électrique

Le système peut être alimenté à bord de la voiture au moyen d'une source externe, ou uniquement au moyen d'une batterie interne (sans alimentation externe).

- (i) Si le système est alimenté à bord de la voiture au moyen d'une source externe (par ex. connexion directe à la batterie de la voiture) :
 - a. plage de tension de fonctionnement :8 V à 16 V DC ;
 - b. lors de la charge, le dispositif ne doit pas prendre plus de 2 A de l'alimentation même si complètement déchargé, et généralement moins d'1 A dans des conditions normales;
 - c. le dispositif devrait résister à une exposition à court terme à une alimentation nominale de 18 V sans dommage permanent;
 - d. taux de charge : depuis un état complètement déchargé lorsque connecté à une alimentation de 12 V pendant 15 minutes, le dispositif doit accumuler suffisamment de charge de sauvegarde pour réaliser 45 s MIN d'enregistrement ;

Alternatively, the manufacturer must supply effective and adequate data analysis software to the FIA and ASNs at no extra cost.

The data files should be downloaded from the device in a format such that they are readable directly without the need for separate configuration files.

- (iv) The date and GMT time of the accident must be measured and recorded.
- (v) The data channels shall have the names, units and ordering as detailed in Appendix
- (vi) Each filename must automatically include as a minimum:
 - a. The unique ADR unit serial number:e.g. 'SNxxxx';
 - b. Date and time in the following format: yyyymmdd-hhmmss;

Example: "SN7890-20160510-163324".

3.5 Power supply

The system may either be powered on-car with external power supply, or solely with an internal battery (without an external power supply).

- (i) If the system is to be powered on-car with external power supply (e.g. direct connection to the car battery):
 - a. operating voltage range: 8V to 16V DC;
 - whilst charging, the device must take no more than 2A from supply even when completely discharged, and typically less than 1A under normal conditions;
 - the device should withstand short-term exposure to 18V nominal supply with no permanent damage;
 - d. rate of charge: from a fully discharged state when connected to a 12V supply for 15 minutes, the device must accumulate enough backup charge for 45s MIN logging;

08.07.2021 Page 8 de 42

- e. gestion de la perte d'alimentation : lorsqu'il est complètement chargé, le permettre système doit l'enregistrement d'au moins 1 événement survenant 15 s MIN après la perte d'alimentation, ou 45 s en cas d'enregistrement en continu, l'absence de en source d'alimentation externe. De plus, le système doit pouvoir achever le cycle d'écriture pour l'événement en cours ou fichier de données une fois cette période d'enregistrement terminée.
- power loss management: when fully charged, the system must allow logging for a minimum of 1 event occurring 15s MIN after the loss of power, or 45s if continuously recording. when no external power source is present. Furthermore, the system must be able to complete the write cycle for the current event or data file once this period of logging has concluded.
- (ii) Si le système est alimenté uniquement au moyen d'une batterie interne (sans alimentation externe):
 - a. La batterie doit être rechargeable à bord de la voiture sans qu'il soit nécessaire de désinstaller l'unité de la voiture ou d'ouvrir le boîtier du dispositif.
 - b. La batterie doit avoir une capacité suffisante pour que le dispositif reste opérationnel pendant un minimum de 30 jours de fonctionnement normal.
- (ii) If the system is to be powered solely with an internal battery (without an external power supply):
 - a. the battery must be rechargeable on-car without having to un-install the unit from the car or open the casing of the device.
 - b. the battery shall be of sufficient capacity such that the device remains operational for a minimum of 30 days of normal operation.

3.6 Connecteur

Un connecteur Deutsch Autosport AS 2 10-35 PN, Souriau 8STA 10-35 PN ou tout autre connecteur compatible doit être utilisé pour la connexion à la voiture, dans le respect des prescriptions de broches visées à l'Article 3.10.

3.6 Connector

- A Deutsch Autosport AS 2 10-35 PN, Souriau 8STA 10-35 PN, or any other compatible connector shall be used for connection to the car, with the pin prescriptions as per Article 3.10.
- Si le système proposé est uniquement constitué d'un ou plusieurs accéléromètre(s), il doit être conçu de manière à être connecté à un enregistreur FIA reconnu.
- If the proposed system solely consists of accelerometer(s), it shall be designed to be connected to a recognised FIA logger.
- (ii) Un nombre raisonnable de câbles de téléchargement doit être fourni sur demande du promoteur/délégué d'un championnat. Le câble de téléchargement doit utiliser une connexion USB unique à PC pour communication alimentation.
- A reasonable number of download cables must be provided on request of a championship promotor/delegate. download cable must use a single USB connection to a PC for communication and power.

08.07.2021 Page 9 de 42

3.7 LED

- Le dispositif ADR doit être équipé d'au moins une LED de statut.
- La signalisation lumineuse doit être au minimum la suivante :
 - a. Fonctionnement normal et communication avec ECU/CAN : LED verte continue à 50 % de luminosité ;
 - Accident enregistré : LED clignotante rouge à pleine luminosité à 4 Hz avec
 5 % de rapport cyclique.

La LED devrait revenir à son état normal dès que le fichier d'accident est lu, téléchargé ou supprimé.

La LED doit indiquer cet état lorsqu'un nouvel accident est enregistré jusqu'à ce que l'appareil soit éteint.

Lorsque l'appareil est allumé, si des accidents sont enregistrés, la LED doit afficher l'état pendant une durée de 60 secondes, puis revenir à son état normal.

- (ii) Si le système ne fonctionne qu'au moyen d'une batterie interne, une LED supplémentaire doit être utilisée pour indiquer le statut de la batterie.
- La signalisation lumineuse pour cette LED devrait indiquer clairement l'état de charge de la batterie comme suit :
 - a. Complètement chargé : LED continue
 - Moins de 24 heures de fonctionnement normal restantes : LED clignotante ON pendant 100 ms toutes les 2 secondes.

3.8 Mise à zéro (élimination des biais)

Un protocole de suppression du décalage (mise à zéro automatique) devrait être appliqué chaque fois que l'unité est alimentée de telle manière que le décalage apparent du dispositif soit inférieur à ± 1 G pour tous les axes, centrés sur :--

a) axe X: 0G;

b) axe Y: 0G;

3.7 LED

(i) The ADR device shall be equipped with at least one status LED.

The minimum flashing scheme shall be:

- a. Normal running and communicating with ECU/CAN: LED solid green at 50% brightness;
- b. Accident stored: LED flashing red at full brightness at 4Hz with 5% duty cycle.

The LED should return to its normal status as soon as the accident file is read, downloaded or deleted.

The LED shall indicate this status from when a new accident is stored until the device is turned off.

When the device is turned on, if any accidents are stored, the LED shall show the status for a duration of 60 seconds, then return to its normal status.

(ii) If the system relies solely on an internal battery, an additional LED shall be used to indicate the status of the battery.

The flashing scheme for this LED should clearly indicate when the state of charge of the battery follows:

- a. Fully charged: LED solid
- Less than 24 hours of normal operation is remaining: LED flashing ON for 100ms every 2s.

3.8 Zeroing (bias removal)

An offset removal protocol (automatic zeroing) should be applied each time the unit is powered on such that the device reading offset be less than ±1G for all axes, centred around:

a) X axis: 0G;

b) Yaxis: 0G;

c) Z axis: +1G.

08.07.2021 Page 10 de 42

c) axe Z: +1G.

3.9 Algorithme de détection d'accident et Indice de gravité d'un accident

- (i) Les trois canaux d'accélération enregistrés doivent être filtrés par le logiciel à un taux d'au moins 1 kHz avec un filtre 100 Hz filtre passe-bas équivalent à CFC60 (par ex. filtre 8 ms-FIR). L'algorithme précis utilisé par le fabricant doit être indiqué et détaillé dans le un dossier technique à fournir au laboratoire d'essai.
- (ii) La détection d'accident doit fonctionner sur les canaux filtrés suivants (X, Y et Z simultanément) et se déclencher conformément aux seuils indépendants configurables pour chaque axe :
 - a. stratégie permanente de sauvegarde de l'événement sur fichier; paramètre par défaut : 15 G 5 ms X ou Y ou 25G 5 ms Z;
 - b. algorithme voyant d'alerte médicale: paramètre par défaut : 15 G 5 ms X ou Y ou 25G 5 ms Z.
 - c. Le système ADR doit enregistrer l'Indice de gravité des accidents (ASI) l'ASI est défini comme étant l'accélération absolue maximale enregistrée dans l'un ou l'autre des canaux lors de la phase de détection du "voyant d'alerte médicale".

L'ADR doit fournir un déclencheur (on/off) via CAN ou via un pin dédié vers un voyant d'alerte médicale.

algorithm Accident detection and **Accident Severity Index**

- The three logged acceleration channels shall be software-filtered at least 1kHz rate with a 100Hz low-pass filter equivalent to CFC60 (e.g. 8ms-FIR filter). The precise algorithm used by the manufacturer shall be disclosed and detailed in the a technical dossier to be submitted to the test house.
- The accident detection shall operate on the above filtered channels (X, Y and Z simultaneously) and trigger according to configurable thresholds independent for each axis:
 - a. event store permanent file saving strategy; default setting: 15G 5ms X or Y or 25G 5ms Z:
 - b. medical warning light algorithm; default setting: 15G 5ms X or Y or 25G 5ms Z.
 - c. The ADR system shall log the Accident Severity Index (ASI) - the ASI is defined as the maximum absolute acceleration recorded in either channel during the 'medical warning light' detection phase.

The ADR must output a trigger (on/off) via CAN or via a dedicated pin to a medical warning light.

3.10 PIN-out (broche de sortie)

L'agencement des broches doit inclure les sorties suivantes:

PIN 1 RS232-Rx

PIN 2 Voyant médical (déclencheur on/off) (si PIN 2 Medical light (on/off trigger) (if used) utilisé)

PIN 3 CAN-Hi PIN 4 CAN-Lo

PIN 5 Voyant de statut

PIN 6 Spécifique au fabricant

PIN 7 USB 5V

3.10 PIN-out

The PIN-out layout shall include the following outputs:

PIN 1 RS232-Rx

PIN 3 CAN-Hi PIN 4 CAN-Lo PIN 5 Status light

PIN 6 Manufacturer specific

PIN 7 USB 5V

08.07.2021 Page 11 de 42 PIN 8 USB D+ PIN 9 USB D-

PIN 10 Spécifique au fabricant

PIN 11 Alimentation 5 V (si utilisée)

PIN 12 Pôle positif de la batterie

PIN 13 Terre et USB 0V

3.11 CAN

Le dispositif ADR doit être équipé d'une ligne CAN et respecter les exigences suivantes :

(i) Spécification matérielle :

a. vitesse: 1 Mbit/s;

b. standard : **compatible avec 2,0a et** 2,0b;

(ii) capacité d'obtenir des canaux 100 Hz de données contextuelles du véhicule, par ex. vitesse de la voiture, position de la pédale d'accélérateur, régime moteur, pression des freins, angle de direction, nombre de tours, distance du circuit, position et statut GPS.

Le protocole CAN doit être conforme à celui détaillé à l'Annexe D.

L'ADR peut être conçu avec des messages CAN supplémentaires avec différents ID, pour autant qu'il s'agisse de paquets de données d'entrée. Les paquets de données de sortie supplémentaires sont interdits.

3.12 Environnement

Le système ADR doit :

- pouvoir fonctionner conformément aux spécifications lorsqu'il est exposé à des températures de fonctionnement comprises entre -15°C et 85°C;
- (ii) afficher un Indice de Protection (IP) d'au moins 66.

3.13 Exigences relatives au logiciel PC

En se connectant à l'ADR, le logiciel PC doit offrir les fonctionnalités suivantes :

- (i) Téléchargement des données (pour un ou plusieurs événements selon la sélection de l'utilisateur).
- (ii) Réglage manuel de la date et de l'heure.
- (iii) Mise à jour et vérification du micrologiciel.

PIN 8 USB D+

PIN 9 USB D-

PIN 10 Manufacturer specific

PIN 11 5V supply (if used)

PIN 12 Battery positive

PIN 13 Ground and USB 0V

3.11 CAN

The ADR device shall be equipped with CAN and meet the following requirements:

- (i) hardware specification:
 - a. speed: 1Mbit/s;
 - b. standard: **compatible with 2.0a and** 2.0b;
- (ii) ability to get context 100Hz vehicle data channels, e.g. car speed, throttle pedal position, rpm, brake pressure, steer angle, lap number, track distance, GPS position and status.

The CAN protocol shall comply with that detailed in Appendix D.

The ADR may be designed with suplementary CAN messages with different IDs as long as they are input packets. Additional output packets are forbidden.

3.12 Environment

The ADR system shall:

- be able to function in accordance to the specification when exposed to operating temperatures between -15°C to 85°C;
- (ii) have an Ingress Protection Marking of at least IP 66.

3.13 PC software requirements

By connecting to the ADR, the PC software must be able to allow:

- (i) Data download (single or multiple events as per user selection).
- (ii) Manual date and time setting.
- (iii) Firmware update and verification.
- (iv) Ability to trigger an accident manually (for

08.07.2021 Page 12 de 42

(iv) Capacité de déclencher un accident manuellement (à des fins d'essais).

the purposes of testing).

Les fonctionnalités suivantes doivent être accessibles via un mot de passe ou un codepin prédéfinis et sécurisés :

- (v) Calibration : capacité de mise à zéro de tous les canaux d'accélération. Seuils de G et durée de détection configurables pour l'algorithme de détection d'accident.
- (vi) Orientation de montage configurable (intervertir les axes dans les cas où l'unité doit être montée selon une autre orientation).
- (vii) Formatage de la mémoire.

Le mot de passe ou le code-pin doivent être fournis uniquement à la FIA.

Toute modification des valeurs par défaut des paramètres décrits en 3.13. (v) et (vi) doit être effectuée soit par la FIA, soit par le fabricant de l'ADR avec l'approbation préalable de la FIA.

Le fabricant de l'ADR doit tenir un registre des paramètres décrits en 3.13. (v) et (vi), définis pour chaque dispositif ADR avec une référence à chaque numéro de série.

Tout dispositif dont on constate qu'il a subi de telles modifications sans l'approbation préalable de la FIA sera considéré comme non conforme à la norme.

3.14 Exigences relatives au logiciel embarqué

Diagnostics incluant la température interne, l'alimentation électrique, la tension de la batterie, la réinitialisation du compteur, la panne du capteur.

3.15 Résistance du boîtier et des composants

Le système ADR doit être suffisamment rigide et solide et doit comprendre au moins trois trous de boulons pour permettre la fixation à la voiture.

3.16 Heure

The following features must be available via a secure pre-set password or pin-code:

- (v) Calibration: ability of zeroing all acceleration channels. Configurable G thresholds and detection time duration for accident detection algorithm.
- (vi) Configurable mounting orientation (i.e. switch axes in cases where the unit has to be mounted in an alternative orientation).
- (vii) Memory formatting.

The password or pin-code must be provided solely to the FIA.

Any modification to the default values of the parameters described in 3.13. (v) and (vi) shall be made either by the FIA or by the ADR manufacturer, with prior approval from the FIA.

The ADR manufacturer must keep a record of the parameters described in 3.13. (v) and (vi), set for each ADR device with a reference to each serial number.

Any device which is found to have such modifications without prior approval from the FIA will be considered as non-compliant with the standard.

3.14 Embedded software requirements

Diagnostics including internal temperature, power supply, battery voltage, reset counter, sensor failure.

3.15 Strength of casing and components

The ADR system shall be sufficiently stiff and strong for its purpose, and shall include at least three bolt-holes for rigid fixation to the car.

3.16 Time

08.07.2021 Page 13 de 42

- (i) Le système ADR doit être doté d'une horloge en temps réel avec une précision de déviation de 1 s/jour MAX et une batterie dédiée pour assurer l'heure précise pendant au moins 5 ans sans alimentation externe;
- (ii) L'heure en sortie de production doit être exprimée en temps UTC à la livraison;
- (iii) L'ADR doit pouvoir synchroniser l'heure par GPS ou CAN.

4. CLASSIFICATION DES MODELES

Toute modification importante des composants internes ou de la fonctionnalité des dispositifs constitue un changement de modèle et, par conséquent, une autorisation de la FIA est requise. De plus, d'autres essais effectués dans un laboratoire d'essais agréé par la FIA peuvent être nécessaires.

4.1 Modifications autorisées

Seules les modifications expressément spécifiées aux points a) et b) ci-dessous sont autorisées sans consultation de la FIA et du laboratoire d'essais.

- a) Changement de la couleur du boîtier : Il est permis de changer la couleur du boîtier à condition que le matériau soit strictement identique (poids, épaisseur, structure, etc.) à celui qui a été homologué initialement.
- b) En cas de pénurie sur le marché ou d'obsolescence de composants passifs (résistances, condensateurs, inducteurs), il est permis de changer de fournisseur de composants en conservant les mêmes caractéristiques électriques/mécaniques et le même niveau de qualification.

D'autres changements tels que les mémoires, les disques flash ou les modifications mineures apportées aux circuits imprimés (comme les améliorations visant à éliminer toute correction manuelle) doivent être communiqués à la FIA et il appartiendra à la FIA de décider si d'autres essais dans un laboratoire agréé par la FIA sont nécessaires.

- (i) The ADR system shall possess a real time clock chip with a 1s/day MAX drift accuracy with dedicated battery to maintain accurate time for at least 5 years with no external power applied;
- (ii) The end-of-line time shall be set in the UTC time standard on delivery.
- (iii) The ADR shall have the ability to synchronise time through GPS or CAN.

4. MODEL CLASSIFICATION

Any significant changes to the devices internal componentry or functionality constitutes a change of model, and consequently an authorisation from the FIA is required. Additionally, further testing at an FIA-approved test house may be required.

4.1 Authorised modifications

Only those modifications expressly specified in points a) and b) below are authorised without consulting the FIA and the test house.

- a) Change of colour of the casing:
- It is permissible to change the colour of the casing on condition that the material is strictly identical (weight, thickness, structure, etc.) to that which was initially homologated.
- b) In case of shortage on the market or obsolescence of passive components (resistors, capacitors, inductors) it is permissible to change the component supplier, maintaining the same electrical/mechanical characteristics and qualification standard.

Other changes such as memories, flash disks or minor Printed Circuit Boards (PCB) changes (such as improvements to eliminate any manual re-work) must be communicated to FIA, and it will be at the FIA's discretion to decide if further testing at an FIA-approved test house is required.

08.07.2021 Page 14 de 42

4.2 Extension d'homologation

Une extension s'applique à une homologation existante et se réfère à une modification d'une des caractéristiques du produit original.

Les fabricants doivent consulter la FIA quant à la viabilité de l'extension du produit ADR homologué avant de demander officiellement l'extension d'homologation.

La limite du nombre d'extensions doit être conforme au Règlement d'Homologation FIA pour les équipements de sécurité.

Toute modification du micrologiciel, du logiciel ou du matériel des systèmes qui affecte les performances du dispositif ou qui modifie les spécifications déclarées lors de l'homologation initiale du système doit être autorisée par la FIA en accord avec le laboratoire.

D'autres essais effectués dans un laboratoire d'essais agréé par la FIA et une analyse plus approfondie par le Département de la Sécurité de la FIA peuvent être exigés. Les tests d'extension d'homologation doivent être effectués dans le même laboratoire d'essais que celui ayant effectué les tests d'homologation d'origine.

4.3 Divers

En plus du dispositif ADR, le fabricant doit fournir un manuel d'utilisation complet et détaillé.

Le fabricant doit prendre des dispositions pour fournir à la FIA et à ses représentants désignés des outils de programmation, de configuration et de débogage sur le terrain.

5. EVALUATIONS DES PERFORMANCES

Les essais de performances ci-après sont obligatoires. La FIA se réserve le droit de demander d'autres essais si une nouvelle technologie est présentée pour homologation.

Si le système proposé consiste uniquement en un(des) accéléromètre(s), les essais doivent être effectués alors que l'ADR est connecté à un enregistreur FIA reconnu.

Trois essais de vibration et un essai sur chariot doivent être effectués avec <u>les</u> trois <u>même</u> unités ADR chacun, conformément à la

4.2 Extension to homologation

An extension applies to an existing homologation and refers to a modification of any of the original product's characteristics.

Manufacturers shall consult the FIA on the viability of the extension of the homologated ADR product before officially requesting the extension to the homologation.

The limit on the number of extensions must comply with the FIA Homologation Regulations for Safety Equipment.

Any changes to the systems firmware, software or hardware that affect the device performance or changes the declared specification when the system was originally homologated must be authorised by the FIA in agreement with the test house.

Further testing at an FIA-approved test house and further analysis by the FIA Safety Department may be required. Homologation extension tests shall be carried out in the same test house as the original homologation tests.

4.3 Miscellaneous

Along with the ADR device, the manufacturer shall provide a comprehensive and detailed user's manual.

The manufacturer shall make provisions to provide field programming, configuration and debugging tools to the FIA and their nominated representatives.

5. PERFORMANCE ASSESSMENT

The performance tests below are mandatory. The FIA reserves the right to request further tests if a new technology is presented for homologation.

If the proposed system solely consists of accelerometer(s), the tests shall be performed whilst the ADR is connected to a recognised FIA logger.

Three shaker tests and one sled test shall be conducted with **the same** three ADR units each, in accordance with the test procedure presented

08.07.2021 Page 15 de 42

procédure d'essai présentée à l'ANNEXE E et à l'ANNEXE F.

Les ADR seront également testés sur piste dans le cadre d'un championnat sélectionné par la FIA.

5.1 Essais de vibration (pour chaque unité ADR)

- La cohérence entre les données obtenues lors des essais et les informations techniques fournies par le fabricant (selon l'ANNEXE B) sera analysée et devra répondre aux exigences établies par le Département de la Sécurité de la FIA;
- L'intégrité physique et le bon fonctionnement de l'ADR doivent être maintenus.

5.2 Essais sur chariot (pour chaque unité ADR)

- L'accélération maximale (CFC60) des données de l'ADR doit se situer dans une plage de ± 5 % de l'accélération maximale de la mesure relevée par le laboratoire (CFC60);
- Le deltaV final (intégration de la courbe d'accélération) des données de l'ADR doit se situer dans une plage de ± 3 % du deltaV final de la mesure relevée par le laboratoire;
- La courbe d'accélération doit se situer à l'intérieur d'un couloir défini comme étant de ± 10 % de l'accélération maximale relevée par le laboratoire, centré autour de la courbe d'accélération mesurée par le laboratoire. Certains écarts à l'extérieur de ce couloir peuvent être acceptés dans les phases de "montée" et de "descente" de l'impulsion, à condition qu'ils ne se produisent pas pendant plus de 30 % de la durée totale de l'impulsion;
- L'intégrité physique et le bon fonctionnement de l'ADR doivent être maintenus.

5.3 Essais sur piste (pour chaque unité ADR)

<u>Sur demande de la FIA,</u> le fabricant devra valider le système dans le cadre d'un championnat sélectionné par la FIA sur 3 voitures au moins, chacune pour un minimum de 3 courses ou séances d'essais. Tout support en

in APPENDIX E and APPENDIX F.

The ADRs shall also be tested on-track in a championship selected by the FIA.

5.1 Shaker tests (to be satisfied by each ADR unit)

- The consistency between the data obtained from the tests and the technical information stated by the manufacturer (as per APPENDIX B) will be analysed, and must meet the requirements set by the FIA Safety Department;
- The physical integrity and proper functionality of the ADR must be maintained.

5.2 Sled tests (to be satisfied by each ADR unit)

- The peak acceleration (CFC60) from the ADR data must be within ±5% of peak acceleration of laboratory measurement (CFC60);
- The final deltaV (integration of acceleration curve) from the ADR data must be within ±3% of final deltaV from laboratory measurement;
- The acceleration curve shall lie within a corridor defined as ±10% of peak acceleration of laboratory measurement, centred around the acceleration curve of the laboratory measurement. Certain deviations outside of this corridor may be accepted in the 'ramp-up' and 'ramp-down' phases of the pulse, provided they do not occur for more than 30% of the pulses' total duration;
- The physical integrity and proper functionality of the ADR must be maintained.

5.3 Track tests (to be satisfied by each ADR unit)

<u>Upon request from the FIA</u>, the manufacturer shall validate the system in a championship selected by the FIA in a minimum of 3 cars, each for a minimum of 3 races or test sessions. Any necessary track support shall be provided by the

08.07.2021 Page 16 de 42

piste nécessaire doit être fourni par le fabricant et les données doivent être étudiées par le Département de la Sécurité de la FIA.

manufacturer and the data shall be reviewed by the FIA Safety Department.

6. ETIQUETAGE

L'étiquette complète ainsi que le processus de marquage doivent être approuvés au préalable par la FIA.

Chaque ADR doit comporter une étiquette d'homologation de la FIA et un hologramme de la FIA, les deux devant être collés sur la surface extérieure du boîtier. Les dimensions de l'étiquette doivent être de 36 x 26 mm et l'emplacement carré vide où coller l'hologramme doit mesurer 15 x 15 mm. Le nom du fabricant peut être remplacé par son logo. Le fond de l'étiquette devra être blanc avec caractères imprimés en noir. La police du texte sera de l'Arial taille 6 et le fabricant devra respecter les caractères en gras, le cas échéant.

L'étiquette doit être indélébile et réalisée de telle façon qu'elle ne puisse être retirée intacte. L'étiquette doit être conforme à la Figure 1 montrant le nom de la présente norme, le nom du fabricant, le numéro d'homologation, la date de fabrication et un numéro de série unique. Chaque échantillon ADR doit avoir un numéro d'identification unique et un historique devra être mis à la disposition de la FIA sur demande.

L'étiquette sera apposée sur un endroit sûr et visible lorsque le système est installé dans le véhicule. Elle doit être du type "se détruisant lorsqu'on l'enlève" et il est recommandé de prévoir des éléments de sécurité mis en place par le fabricant afin d'éviter toute falsification ou copie. Les étiquettes ne doivent pas être disponibles en dehors du lieu de fabricant et ne peuvent être installées que par le fabricant. Le fabricant doit se conformer aux lignes directrices de la FIA en matière d'étiquetage pour les systèmes ADR.

L'étiquette sera contrôlée par la FIA, qui réserve à ses officiels, ou à ceux d'une ASN, le droit d'enlever ou d'annuler l'étiquette. Cela se produira lorsque, de l'avis du commissaire

6. LABELLING

The complete label and marking process shall be approved beforehand by the FIA.

Each ADR shall be marked with a FIA homologation label and a FIA hologram, both of which shall be glued onto the outer surface of the external casing. The dimensions of the label shall be 36 x 26mm and the empty square for gluing the hologram shall be 15 x 15mm. The manufacturer's name can be replaced by its logo. The label shall have a white background and the print shall be in black. The text font style shall be Arial size 6pt, and the manufacturer shall follow the bold font style when applicable.

The label must be indelible and made in such a way that it cannot be removed intact. The label shall be in compliance with Figure 1 showing the name of this standard, the manufacturer's name, the homologation number, the date of manufacture and a unique serial number. Each ADR unit must have a unique identification number and a record shall be made available to the FIA on request.

The label shall be affixed in a secure location that is visible when the system is mounted in the vehicle. It shall be of a destruct-on-removal foil type and it is recommended that it include security features put in place by the manufacturer to avoid tampering and copying. The labels shall not be available outside the manufacturer's premises and may only be fitted by the manufacturer. The manufacturer shall follow the FIA labelling guidelines for ADR.

The label will be controlled by the FIA, which reserves the right for its officials or the officials of an ASN to remove or strike out the label. Such action will be taken when, in the opinion of the chief

08.07.2021 Page 17 de 42

technique en chef de l'épreuve, la future scrutineer of the event, the future performance of performance du système ADR est mise en cause. the ADR has been jeopardised.

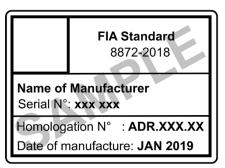


Figure 1. Modèle d'étiquette d'homologation à apposer sur le système ADR Figure 1. Sample of homologation label to be affixed to the ADR

7. VALIDITE

La validité d'un ADR expire cinq ans après l'année de fabrication. Par exemple, un ADR fabriqué le 1.1.2018 sera valable jusqu'au 31.12.2023; de même, un ADR fabriqué le 31.12.2018 sera valable jusqu'au 31.12.2023.

8. DONNEES

Le fabricant accepte que les droits de propriété de toutes les données enregistrées par l'ADR soient cédés à la FIA à perpétuité et il s'efforcera de veiller à ce que cela soit indiqué dans les documents liant le fabricant et le client.

7. VALIDITY

The validity of an ADR expires five years after the year of manufacture. For example, an ADR manufactured on 1.1.2018 will be valid until 31.12.2023; likewise, an ADR manufactured on 31.12.2018 will be valid until 31.12.2023.

8. DATA

The manufacturer agrees that the data ownership rights of any and all data recorded by the ADR should be assigned to the FIA in perpetuity, and will endeavour to ensure that this is stated in the relevant documentation between the manufacturer and the customer.

08.07.2021 Page 18 de 42

ANNEXE A APPENDIX A

RAPPORT D'ESSAI POUR ADR

(Voir ci-dessous)

TEST REPORT FOR ADR

(See below)

Modèle de rapport d'essai fourni sur demande. Test Report Template to be provided upon request.

COMMENT REMPLIR LE RAPPORT D'ESSAI

HOW TO FILL IN THE TEST REPORT

Le rapport d'essai doit être rempli successivement par trois organismes pour être valable :

The test report shall be filled in by three different bodies consecutively in order to be valid:

- 1. Le laboratoire d'essais complète le rapport et conclut sur la conformité du système ADR à la norme FIA. Il est demandé de remplir chaque case soit par des coches, soit par des valeurs si elles sont requises, soit par tout commentaire que le laboratoire d'essais juge utile de mentionner. La personne certifiant les essais doit tamponner et signer dans les cases de la partie 2.2 du rapport.
- 1. The test house completes the report and concludes whether the ADR is in conformity with the FIA standard. Each box should be filled in, either with figures or ticks if these are required or with any comments that the test house may consider worth mentioning. The person certifying the tests must stamp and sign in the cells in Section 2.2 of the report.
- 2. Le représentant de l'ASN doit tamponner et signer dans les cases de la partie 2.1 du rapport.
- 2. The representative of the ASN must stamp and sign in the spaces provided in Section 2.1 of the report.
- 3. La FIA attribue un numéro d'homologation à la vue du rapport dûment complété par tous les intervenants et une fois le système approuvé par le Département de la Sécurité de la FIA.
- 3. The FIA assigns the homologation once it has seen the report duly completed by all the parties concerned, and system has been approved by the FIA Safety Department.

08.07.2021 Page 19 de 42

APPENDIX B

TECHNICAL SPECIFICATION INFORMATION

A full specification document shall be submitted. This should include the performance of the measurement system in accordance with the framework detailed below, and a complete set of technical drawings, bill of materials for the casing and internal componentry, and a component placement drawing:

	Characteristic	Unit	Value
	Data channel full scale	G	
	Reference sensitivity (provide frequency, temperature and acceleration references)	mV/G	
Accelerometers	Frequency response range (provide sensitivity deviation graph)	% or dB vs Hz	
	Transverse sensitivity	%	
	Amplitude linearity	% perG	
	Mechanical frequency as mounted in ADR system	Hz	
Anti-aliasing, sampling	Please refer to the diagram below		
	Measurement range	G	
Logging	Logging frequency	Hz	
Logging	Numerical format	bit	
	Logging scaling	mG/bit	
	Download connector	(Ethernet, USB or other)	
	Download rate	Mbits/s	
Data	Format	ASCII, CSV, Excel, proprietary or other	
	Reader/visualisation tool	Wintax, Atlas, Excel, proprietary or other	
Environmental	Ingress Protection Marking	IP	
Liviioiiiieiilai	Temperature operating range	°C	

08.07.2021 Page 20 de 42

Anti-aliasing, sampling and logging:

Accelerom	eter input internal filter					
Туре:						
Order:						
Cut-off freq	uency (-3dB):					
Frequency	for -30dB:					
	 					
Accelerome	eter prefilter head room					
Headroom:						
	*					
Accelerom	eter output internal filter					
Туре:						
Order:						
1	uency (-3dB):					
Frequency	for -30dB:					
	*					
Hardware a	anti-aliasing filter					
Туре:	Type:					
Order:						
Cut-off freq	uency (-3dB):					
Frequency	for -30dB:					
	 					
A	ADC sampling					
	requency:					
В	it:					
_						
Software a	nti-aliasing filter					
Order:						
Cut-off frequency (-3dB):						
Frequency	for -30dB:					
	_					
Г	.ogging					
I -	requency:					
s	Scaling:					

08.07.2021 Page 21 de 42

ANNEXE B

INFORMATIONS SPECIFICATIONS TECHNIQUES

Un document de caractéristiques complet doit être présenté. Celui-ci devrait comprendre les informations de performance du système de mesure conformément au cadre décrit ci-dessous, ainsi qu'un ensemble complet de dessins techniques, une nomenclature des matériaux pour le boîtier et les composants internes et un plan d'implantation des composants :

	Caractéristique	Unité	Valeur
	Echelle complète de canal de données	D	
	Sensibilité de référence (fournir les références de fréquence, de température et d'accélération)	mV/G	
Accéléromètres	Plage de réponse en fréquence (fournir le graphique de déviation de sensibilité)	% ou dB vs Hz	
	Sensibilité transversale	%	
	Linéarité d'amplitude	% parG	
	Fréquence mécanique tels que montés dans le système ADR	Hz	
Anti-repliement, échantillonnage	Se référer au schéma ci-dessous	S.	
	Plage de mesure	G	
Enregistrement	Fréquence d'enregistrement	Hz	
Emegistrement	Format numérique	bit	
	Résolution de l'enregistrement	mG/bit	
	Connecteur de téléchargement	(Ethernet, USB ou autre)	
	Taux de téléchargement	Mbits/s	
Données	Format	ASCII, CSV, Excel, propriétaire ou autre	
	Lecteur/outil de visualisation	Wintax, Atlas, Excel, propriétaire ou autre	
	Indice de protection d'intrusion	IP	
Environnement	Plage de température de fonctionnement	°C	

08.07.2021 Page 22 de 42

Filtre interne d'entrée de l'accéléromètre	
Type :	
Ordre Commande :	
Fréquence de coupure (-3dB) :	J
•	
Amplitude de débattement pré-filtrage	de
l'accéléromètre	_
Amplitude de débattement pré-filtrage:	
+	
Filtre interne de sortie de l'accéléromè	tro
Type:	
Ordre:	
Fréquence de coupure (-3dB) :	
Fréquence pour -30dB :	
Frequence pour -300B :	
*	
Filtre anti-repliement matériel	
Type :	
Ordre:	
Fréquence de coupure (-3dB) :	
Fréquence pour -30dB :	
+	
Echantillonage CAN	
Fréquence :	
Bit :	
<u> </u>	
—	
Filtre anti-repliement logici	
Type :	
Ordre:	
Fréquence de coupure (-3dB	5):
Fréquence pour -30dB :)
	
Γ	Enregistrement
	Fréquence :
	Résolution :

08.07.2021 Page 23 de 42

APPENDIX C

DATA HEADERS AND CHANNELS

The data shall be stored and exported in compliance with the format specified below. In instances where optional channels are <u>not</u> output, the values shall be empty but the overall order prescribed shall remain.

C.1. Headers and column titles

- Event date, time of day of first sample, and time zone
- Serial number
- Column titles
 - o Channel name
 - Unit (on next row)

C.2. Mandatory channels

Order	Name	Unit/Format	Sign convention	Description
1	tTime	S	-	Sample time
2	gADRX	G	Positive = forward	Anti-aliased * ADR acceleration
	yADKX	G	acceleration	along its X-axis
3	gADRY	G	Positive = left	Anti-aliased* ADR acceleration
3	gADK I	9	acceleration	along its Y-axis
4	gADRZ	G	Positive = upward	Anti-aliased* ADR acceleration
4	yADK2	9	acceleration	along its Y-axis
5	gCFC60X	G	Positive = forward	CFC60** acceleration along its
3	gCi Coox	9	acceleration	X-axis
6	gCFC60Y	G	Positive = left	CFC60** acceleration along its
U	goi coo i	9	acceleration	Y-axis
7	gCFC60Z	G	Positive = upward	CFC60** acceleration along its
,	901 000Z	9	acceleration	Z-axis
8	ASI	G	Absolute value	Accident Severity Index

^{*} In this context, 'unfiltered' means post-logging, after all anti-aliasing filters have been applied, and before any analysis filter or accident detection algorithm is applied.

C.3. Context vehicle data channels (from CAN)

Order	Name	Unit/Format	Sign convention	Description
9	NLap	-	Positive	Lap number
10	sLap	m	Positive	Lap distance
11	vCarWheel	kph	Positive = forward speed Absolute value	Car speed (calculated from Wheel Speed)
12	rThrottle	%	-	Throttle actuator position
13	aSteer	deg	Positive = left-hand- side turn	Steer angle
14	pBrakeF	bar	Positive	Front brake pressure
<u>15</u>	<u>pBrakeR</u>	<u>bar</u>	<u>Positive</u>	Rear brake pressure
<u>16</u>	nEngine	rev/min	Positive	Engine rotational speed

08.07.2021 Page 24 de 42

^{**} Calculated with manufacturer specified filter to achieve CFC60 response from the system.

C.4. GPS data channels (from GPS hardware or CAN)

Order	Name	Unit/Format	Sign convention	Description
16 <u>17</u>	gpsLat	DDD.DDDDDDD°	Positive values are north of the equator, negative values to the south.	GPS latitude coordinate
47 <u>18</u>	gpsLong	DDD.DDDDDDD°	Positive values for east longitude, negative values for west longitude.	GPS longitude coordinate
18 <u>19</u>	gpsVCar	kph	Positive = forward speed	Car speed (calculated from GPS)
19 20	gpsStatus	chipset-related	-	GPS status

C.5. Gyro channels (if included within device)

Order	Name	Unit/Format	Sign convention	Description
20 <u>21</u>	nADRX	deg/s	Positive = from Y to Z	Rotational speed recorded by the ADR around its X-axis
21 <u>22</u>	nADRY	deg/s	Positive = from Z to X	Rotational speed recorded by the ADR around its Y-axis
22 <u>23</u>	nADRZ	deg/s	Positive = from X to Y	Rotational speed recorded by the ADR around its Z-axis

08.07.2021 Page 25 de 42

ANNEXE C EN-TETES ET CANAUX DE DONNEES

Les données sont stockées et exportées dans le format spécifié ci-dessous. Dans les cas où les canaux optionnels <u>ne</u> sont <u>pas</u> émis, les valeurs doivent être vides mais l'ordre général prescrit doit demeurer inchangé.

C.1. En-têtes et titres des colonnes

- Date de l'événement, heure du jour du premier échantillon et fuseau horaire
- Numéro de série
- Titres des colonnes
 - o Nom du canal
 - o Unité (sur la ligne suivante)

C.2. Canaux obligatoires

Ordre	Nom	Unité/Format	Convention de signes	Description
1	tTime	S	-	Temps d'échantillonnage
2	gADRX	G	Positif = accélération vers l'avant	Anti-repliement* Accélération ADR le long de son axe X
3	gADRY	G	Positif = accélération vers la gauche	Anti-repliement* Accélération ADR le long de son axe Y
4	gADRZ	G	Positif = accélération vers le haut	Anti-repliement* Accélération ADR le long de son axe Y
5	gCFC60X	G	Positif = accélération vers l'avant	CFC60** Accélération le long de son axe X
6	gCFC60Y	G	Positif = accélération vers la gauche	CFC60** Accélération le long de son axe Y
7	gCFC60Z	G	Positif = accélération vers le haut	CFC60** Accélération le long de son axe Z
8	ASI	G	Valeur absolue	Indice de gravité des accidents

^{*} Dans ce contexte, on entend par "non filtré" le post-enregistrement, après l'application de tous les filtres anti-repliement et avant l'application de tout filtre d'analyse ou algorithme de détection des accidents.

C.3. Canaux de données contextuelles du véhicule (à partir de CAN)

Ordre	Nom	Unité/Format	Convention de signes	Description
9	NLap	-	Positif	Numéro du tour
10	sLap	m	Positif	Distance par tour
			Positif = vitesse vers	Vitesse de la voiture (calculée
11	vCarWheel	kph	l'avant	à partir de la vitesse de roue)
			Valeur absolue	
12	rThrottle	%	_	Position de l'actionneur du
12	TTHOME	70	-	papillon des gaz
13	aSteer	dog	Positif = virage à	Angle de braquage
13	asieei	deg	gauche	
14	pBrakeF	bar	Positif	Pression de freinage avant
<u>15</u>	<u>pBrakeR</u>	<u>bar</u>	<u>Positif</u>	Pression de freinage arrière
<u>16</u>	nEngine	rev/min	Positif	Vitesse de rotation du moteur

08.07.2021 Page 26 de 42

^{**} Calculé avec le filtre spécifié par le fabricant pour obtenir la réponse CFC60 du système.

C.4. Canaux de données GPS (à partir de matériel GPS ou CAN)

Ordre	Nom	Unité/Format	Convention de signes	Description
16 <u>17</u>	gpsLat	DDD.DDDDDDD°	Les valeurs positives sont au nord de l'équateur, les valeurs négatives au sud.	Coordonnées de latitude GPS
17 <u>18</u>	gpsLong	DDD.DDDDDDD°	Valeurs positives pour la longitude est, valeurs négatives pour la longitude ouest.	Coordonnées de longitude GPS
18 19	gpsVCar	Km/h	Positif = vitesse d'avancement	Vitesse de la voiture (calculée à partir du GPS)
19 20	gpsStatus	chipset-related	-	Statut GPS

C.5. Canaux du gyroscope (si inclus dans le dispositif)

Ordre	Nom	Unité/Format	Convention de signes	Description
20 <u>21</u>	nADRX	deg/s	Positif = de Y à Z	Vitesse de rotation enregistrée par l'ADR autour de son axe X
21 22	nADRY	deg/s	sPositif = de Z à X	Vitesse de rotation enregistrée par l'ADR autour de son axe Y
22 <u>23</u>	nADRZ	deg/s	Positif = de X à Y	Vitesse de rotation enregistrée par l'ADR autour de son axe Z

08.07.2021 Page 27 de 42

APPENDIX D

CAN PROTOCOL

D.1. Input packets (external to ADR)

Message 1

Byte	Description	Scaling	Туре
0-1	Engine rotational speed	rpm/bit	16-bit unsigned
2	Front brake pressure	bar/bit	16-bit 8-bit unsigned
3	Rear brake pressure	bar/bit	16-bit 8-bit unsigned
4-5	Lap distance	1m/bit	16-bit unsigned
6-7	Throttle actuator position	0.1 %/bit	16-bit signed

Message 2

Byte	Description	Scaling	Туре
0-1	Vehicle speed	0.1 km/h/bit	16-bit unsigned
2-3	Steer angle	°/bit	16-bit signed
4-5	Throttle pedal position	0.1 %/bit	16-bit signed
6.7	Pit Lane + Lap number	Pit Lane*0x8000 + Lap	16-bit unsigned
6-7	<u>Free</u>		

Message 3

Byte	Description	Scaling	Туре
0-3	GPS Latitude	1e7 degrees	32-bit fixed point (7dps) value
4-7	GPS Longitude	1e7 degrees	32-bit fixed point (7dps) value

08.07.2021 Page 28 de 42

Message 4

Message ID: 0x681Message rate: f = 10HzFormat: Big Endian

Byte	Description	Scaling	Туре
0-3	GPS time	HHMMSS.sss	32-bit unsigned
4-5	GPS speed	0.1 km/h/bit	16-bit unsigned
6-7	GPS altitude	0.1m/bit	16-bit signed

Message 5

Message ID: 0x682Message rate: f = 10HzFormat: Big Endian

Byte	Description	Scaling	Туре
0-2	GPS date	DDMMYY	24-bit unsigned
<u>3-7</u>	Free*		
3	GPS valid		8-bit signed
4-5	True course information Free	0.1 degree/bit	16-bit signed
6	Horizontal dilution of precision Free	0.1/bit	8-bit unsigned value
7	Number of satellites Free		8-bit unsigned value

^{*}reporting the state of the position information. See NMEA0183 for definition for values.

Message 6

Message ID: 0x683

Message rate: f = 5Hz

Format: Big Endian

Byte	Description	Scaling	Type
0-1	Magnetic variation	0.1 degree/bit	16-bit signed
2	DGPS station ID		8-bit unsigned value
3	DGPS update time	1s/bit	8-bit unsigned value
4	FAA mode*		8-bit signed
5	Fix quality*		8-bit signed
6-7	WGS84 height above geoid	0.1m/bit	16-bit signed

^{*}See NMEA0183 for definition for values.

08.07.2021 Page 29 de 42

^{*}It is advised to use those bytes to send GPS status information to the ADR.

D.2. Output packets (ADR to external)

Message 7 <u>6</u>

Byte	Description	Scaling	Туре
		0 = no accident	
0	Accident Severity Index	1-255 = severity of last accident	8-bit unsigned
		detected since power on	
1	ADR software version	10 (e.g. 0x25 = 37d => 3.7)	unsigned
2-3	ADR Status	See table below	bitmapped
4-5	ADR serial number	-	16-bit unsigned

ADR status:

Bit	Description	Note	
0	Logging in progress	1 if logger is in LOGGING state, else 0	
1	Logging config OK	1 if a configuration table is good, else 0	
2	CAN Team OK	1 if ADR is receiving CAN messages from ECU, else 0	
3	Accident stored	1 if an accident is stored in memory, else 0	
4	Accident active	1 if an accident is being detected	
5	Download mode	1 when USB is connected for data download	
6-15	0	Always zero	

Message 8 7

Byte	Description	Scaling	Туре
0-1	Yaw rate (if gyro)	8.75 mdps/s/bit	16-bit signed
2-3	Acc Y (G-Lateral)	0.006125 G/bit	16-bit signed
4-5	Acc X (G-Longitudinal)	0.006125 G/bit	16-bit signed
6-7	Acc Z (G-Vertical)	0.006125 G/bit	16-bit signed

08.07.2021 Page 30 de 42

ANNEXE D

PROTOCOLE CAN

D.1. Paquets de données d'entrée (externes à l'ADR)

Message 1

 $\begin{array}{ll} \mbox{ID du message :} & \mbox{0x200} \\ \mbox{Fr\'equence du message :} & \mbox{f = 100Hz} \\ \mbox{Format :} & \mbox{Big Endian} \\ \end{array}$

Octet	Description	Mise à l'échelle	Туре
0-1	Vitesse de rotation du moteur	tr/min/bit	16 bits non signé
2	Pression de freinage avant	bar/bit	16 8 bits non signé
3	Pression de freinage arrière	bar/bit	16 8 bits non signé
4-5	Distance par tour	1m/bit	16 bits non signé
6-7	Position de l'actionneur du papillon des gaz	0,1 %/bit	16 bits signé

Message 2

 $\begin{array}{ll} \mbox{ID du message:} & \mbox{0x204} \\ \mbox{Fr\'equence du message:} & \mbox{f = 100Hz} \\ \mbox{Format:} & \mbox{Big Endian} \\ \end{array}$

Octet	Description	Mise à l'échelle	Туре
0-1	Vitesse du véhicule	0,1 km/h/bit	16 bits non signé
2-3	Angle de braquage	°/bit	16 bits signé
4-5	Position de la pédale d'accélérateur	0,1 %/bit	16 bits signé
6-7	Voie des stands + numéro du tour Libre	Voie des stands *0x8000 + Tour	16 bits non signé

Message 3

 $\begin{array}{ll} \mbox{ID du message :} & \mbox{0x680} \\ \mbox{Fr\'equence du message :} & \mbox{f = 10Hz} \\ \mbox{Format :} & \mbox{Big Endian} \\ \end{array}$

Octet	Description	Mise à l'échelle	Туре
0-3	Latitude GPS	1e7 degrés	32 bits virgule fixe (7dps)
4-7	Longitude GPS	1e7 degrés	32 bits virgule fixe (7dps)

08.07.2021 Page 31 de 42

Message 4

 $\begin{array}{ll} \mbox{ID du message :} & \mbox{0x681} \\ \mbox{Fr\'equence du message :} & \mbox{f = 10Hz} \\ \mbox{Format :} & \mbox{Big Endian} \\ \end{array}$

Octet	Description	Mise à l'échelle	Туре
0-3	Heure GPS	HHMMSS.sss	32 bits non signé
4-5	Vitesse GPS	0,1 km/h/bit	16 bits non signé
6-7	Altitude GPS	0,1 m/bit	16 bits signé

Message 5

 $\begin{array}{ll} \mbox{ID du message:} & \mbox{0x682} \\ \mbox{Fr\'equence du message:} & \mbox{f = 10Hz} \\ \mbox{Format:} & \mbox{Big Endian} \\ \end{array}$

Octet	Description	Mise à l'échelle	Туре
0-2	Date GPS	JJMMAA	24 bits non signé
<u>3-7</u>	<u>Libre*</u>		
3	GPS valide *		8 bits signé
4 -5	Informations sur le	0,1 degré/bit	16 bits signé
	parcours réel <u>Libre</u>	 0, 1 degre/bit 	
6	Dilution horizontale de la	0.1/bit	Valeur non signée 8
6	précision Libre	0, 1/DR	bits
7	Nombre de satellites Libre		Valeur non signée 8
7			bits

^{*} signalement de l'état de l'information sur la position. Voir NMEA0183 pour la définition des valeurs. *Il est conseillé d'utiliser ces octets pour envoyer les informations de statut du GPS à l'ADR.

Message 6

ID du message : 0x683

Fréquence du message : f = 5Hz

Format : Big Endian

Octet	Description	Mise à l'échelle	Type
0-1	Variation magnétique	0,1 degré/bit	16 bits signé
2	ID de station DGPS		Valeur non signée 8 bits
3	Temps de mise à jour DGPS	1 s/bit	Valeur non signée 8 bits
4	Mode FAA*		8 bits signé
5	Qualité de correction*		8 bits signé
6-7	Hauteur WGS84 au-dessus du géoïde	0,1 m/bit	16 bits signé

^{*} Voir NMEA0183 pour la définition des valeurs.

08.07.2021 Page 32 de 42

D.2. Paquets de données de sortie (ADR vers l'extérieur)

Message 7 6

 $\begin{array}{ll} \mbox{ID du message :} & \mbox{\bf 0x7B} \\ \mbox{Fr\'equence du message :} & \mbox{\bf f = 10Hz} \\ \mbox{Format :} & \mbox{Big Endian} \\ \end{array}$

Octet	Description	Mise à l'échelle	Туре
	Indice de gravité des	0 = pas d'accident	8 bits non signé
0	accidents	1-255 = gravité du dernier accident	
		détecté depuis la mise sous tension	
1	Version du logiciel de l'ADR	10 (par ex. 0x25 = 37d => 3,7)	non signé
2-3	Statut de l'ADR	Voir tableau ci-dessous	bitmap
4-5	Numéro de série de l'ADR	-	16 bits non signé

Statut ADR :

Bit	Description	Note
0	Enregistrement en	1 si l'enregistreur est à l'état d'ENREGISTREMENT, sinon 0
	cours	
1	Configuration de	1 si un tableau de configuration est bon, sinon 0
'	l'enregistrement OK	
2	Equipe CAN OK	1 si ADR reçoit des messages CAN de l'ECU, sinon 0
3	Accident stocké	1 si l'accident est enregistré en mémoire, sinon 0
4	Accident actif	1 si un accident est détecté
5	Mode téléchargement	1 lorsque le port USB est connecté pour le téléchargement des
3		données
6-15	0	Toujours zéro

Message 8 7

 $\begin{array}{ll} \mbox{ID du message :} & \mbox{0x81} \\ \mbox{Fr\'equence du message :} & \mbox{f = 100Hz} \\ \mbox{Format :} & \mbox{Big Endian} \\ \end{array}$

Octet	Description	Mise à l'échelle	Туре
0-1	Vitesse de lacet (si gyroscope)	8,75 mdps /s /bit	16 bits signé
2-3	Acc. Y (G-latéral)	0,006125 G/bit	16 bits signé
4-5	Acc. X (G-Longitudinal)	0,006125 G/bit	16 bits signé
6-7	Acc. Z (G-Vertical)	0,006125 G/bit	16 bits signé

08.07.2021 Page 33 de 42

ANNEXE E

ESSAIS DE VIBRATION

Trois essais de vibration avec trois unités ADR chacun doivent être effectués conformément à la matrice indiquée au point D1.

Pour chaque essai, les trois unités ADR doivent être fixées solidement sur le pot vibrant de sorte que :

- a. Unité ADR n°1 X = pot vibrant Z
- b. Unité ADR n°2 Y = pot vibrant Z
- c. Unité ADR n°3 Z = pot vibrant Z

E1. Matrice d'essai du pot vibrant

TEST	<u>AMPLITUDE</u>	BALAYAGE EN	DUREE
		FREQUENCE	
1	5G	10-2500 Hz	Pas moins de
		[linéaire]	2 min
2	40G	40-2500 Hz	Pas moins de
		[linéaire]	2 min
3	70G	100-2000 Hz	Pas moins de
		[linéaire]	2 min

E2. Instrumentation de laboratoire

L'instrumentation et l'enregistrement des données devraient être conformes aux exigences applicables des normes ISO 6487-2015 et SAE J211.

E3. Documentation minimale à fournir :

- (i) les données numériques brutes (non filtrées) provenant du capteur du laboratoire et des unités ADR au format ASCII ou Excel ;
- (ii) un graphique des accélérations enregistrées (gADRX, gADRY, gADRZ), en fonction du temps, sous forme de superposition de la mesure relevée par le capteur du laboratoire contre la mesure relevée par les trois unités de mesure ADR.
- (iii) un graphique de la densité spectrale de puissance (DSP) des accélérations enregistrées (gADRX, gADRY, gADRZ) par rapport à la fréquence, en superposition de la mesure du capteur effectuée par le laboratoire par rapport à la mesure des trois unités ADR.

APPENDIX E

SHAKER TESTS

Three shaker tests with three ADR units each shall be performed as per the Matrix shown in D1.

For each test, the three ADR units shall be hard-mounted on the shaker such that:

- a. ADR unit n°1 X = shaker Z
- b. ADR unit n°2 Y = shaker Z
- c. ADR unit n°3 Z = shaker Z

E1. Shaker Test Matrix

TEST	MAGNITUDE	FREQUENCY	DURATION	
		<u>SWEEP</u>		
1	5G	10-2500Hz	No less	
		[linear]	than 2min	
2	40G	40-2500Hz	No less	
		[linear]	than 2min	
3	70G	100-2000Hz	No less	
		[linear]	than 2min	

E2. Lab instrumentation

Instrumentation and data recording should conform to the relevant requirements of ISO standard 6487-2015 and SAE J211.

E3. Minimum documentation to be provided:

- raw (unfiltered) numerical data from laboratory sensor and the ADR units in ASCII or Excel format;
- (ii) a graph of the recorded accelerations (gADRX, gADRY, gADRZ), against time as an overlay of the laboratory's own sensor measurement against the three ADR units measurement.
- (iii) a graph of the Power Spectral Density
 (PSD) of the recorded accelerations
 (gADRX, gADRY, gADRZ) against
 frequency as an overlay of the
 laboratory's own sensor measurement
 against the three ADR units
 measurement.

08.07.2021 Page 34 de 42

ANNEXE F

ESSAIS SUR CHARIOT

Un essai sur chariot doit être effectué avec trois unités ADR.

F1. Impulsion de choc et installation des dispositifs

Spécifications minimales :

- (i) **décélération** <u>acceleration</u> <u>absolue</u> maximale 40G MIN ;
 - (ii) vitesse d'impact 15 m/s MIN;
 - (iii) trois unités ADR fixées solidement sur le chariot de sorte que :
 - a. Unité ADR n°1 X = chariot X;
 - b. Unité ADR n°2 Y = chariot X ;
 - c. Unité ADR n°3 Z = chariot X.

F2. Instrumentation de laboratoire

Le canal de données doit avoir une classe de fréquence égale à 60 (c'est-à-dire "CFC60" selon les normes ISO 6487-2015 et SAE J211).

Le capteur <u>tri-axial</u> utilisé par le laboratoire doit être fixé solidement sur la même surface et aussi près que possible des trois unités ADR testées.

F3. Documentation minimale à fournir :

- les données numériques brutes (non filtrées) provenant du capteur de laboratoire et des unités ADR au format ASCII ou Excel;
- (ii) pour chacun des axes X, Y et Z, deux graphiques d'accélération (CFC60) et de deltaV en fonction du temps montrant la superposition des mesures des capteurs du laboratoire avec les mesures des trois unités ADR :
- (iii) la preuve écrite, fournie par le laboratoire d'essais, que l'essai a réussi.

APPENDIX F

SLED TESTS

One sled test with three ADR units shall be performed.

F1. Crash Pulse and Devices Installation

Minimum specification:

- (i) peak deceleration absolute acceleration 40G MIN;
- (ii) impact speed delta V 15m/s MIN;
- (iii) three ADR units hard-mounted on the sled such that:
 - a. ADR unit $n^{\circ}1 X = \text{sled } X$;
 - b. ADR unit n°2 Y = sled X;
 - c. ADR unit $n^3 Z = sled X$.

F2. Lab instrumentation

The data channel shall have a frequency class equal to 60 (i.e. "CFC60" as per ISO standard 6487-2015 and SAE J211).

The <u>tri-axis</u> sensor used by the laboratory must be hard-mounted to the same surface and as close as possible to the three ADR units that are being tested.

F3. Minimum documentation to be provided:

- (i) raw (unfiltered) numerical data from laboratory sensor and the ADR units in ASCII or Excel format;
- (ii) for each of the sled X, Y and Z axes, two graphs of acceleration (CFC60) and deltaV against time showing the overlay of the laboratory's sensor measurements against the three ADR units measurements;
- (iii) written evidence, from the test facility, that the test is successful.

08.07.2021 Page 35 de 42

LISTE DES MODIFICATIONS LIST OF MODIFICATIONS

Nouveau texte : <u>ainsi</u>

Texte supprimé : <u>ainsi</u>

Commentaires : *ainsi*New text: <u>thus</u>

Deleted text: thus

Comments: thus

Date	Modifications	Modifications
05.12.2018	Première version	First version
04.10.2019	Traduction en français	Translation into french
04.10.2019	3. Exigences de conception [] Si le système proposé est uniquement constitué d'un ou plusieurs accéléromètres, il doit être conçu pour être utilisé avec un enregistreur reconnu par la FIA. Dans ce cas, seuls les Articles 3.1, 3.2, 3.6 (ii), 3.12 et 3.15 s'appliquent. La FIA pourra exiger du fabricant qu'il apporte son soutien pour la connexion et l'intégration du dispositif avec l'enregistreur FIA. [] 3.6 Connecteur [] Si le système proposé est uniquement constitué d'un ou plusieurs accéléromètre(s), il doit être conçu de manière à être connecté à un enregistreur FIA reconnu. [] 3.9 Algorithme de détection d'accident et Indice de gravité d'un accident	3. Design requirements [] If the proposed system solely consists of accelerometer(s), it shall be designed for use with a recognised FIA logger. In such a case, only Articles 3.1, 3.2, 3.6 (ii), 3.12, and 3.15 are applicable. The FIA may require the manufacturer to support the connection and integration of the device with the FIA logger. [] 3.6 Connector [] If the proposed system solely consists of accelerometer(s), it shall be designed to be connected to a recognised FIA logger. [] 3.9 Accident detection algorithm and Accident Severity Index
	(iii) [] L'algorithme précis utilisé par le fabricant doit être indiqué et détaillé dans le un dossier technique à fournir au laboratoire d'essai. []	(iii) [] The precise algorithm used by the manufacturer shall be disclosed and detailed in the a technical dossier to be submitted to the test house. []

08.07.2021 Page 36 de 42

5. EVALUATIONS DES PERFORMANCES

[...]

Si le système proposé consiste uniquement en un(des) accéléromètre(s), les essais doivent être effectués alors que l'ADR est connecté à un enregistreur FIA reconnu.

Trois essais de vibration et un essai sur chariot doivent être effectués avec <u>les</u> trois <u>même</u> unités ADR chacun, conformément à la procédure d'essai présentée à l'ANNEXE E et à l'ANNEXE F.

[...]

5.3 Essais sur piste (pour chaque unité ADR)

Sur demande de la FIA, le fabricant devra valider le système dans le cadre d'un championnat sélectionné par la FIA sur 3 voitures au moins, chacune pour un minimum de 3 courses ou séances d'essais. [...]

E3. Documentation minimale à fournir :

04.10.2019

- (i) [...]
- (ii) [...]
- (iii) un graphique de la densité spectrale de puissance (DSP) des accélérations enregistrées (gADRX, gADRY, gADRZ) par rapport à la fréquence, en superposition de la mesure du capteur effectuée par le laboratoire par rapport à la mesure des trois unités ADR.

F1. Impulsion de choc et installation des dispositifs

Spécifications minimales :

- (i) **décélération accélération absolue** maximale 40G MIN ;
- (ii) vitesse d'impact delta V 15 m/s MIN ; [...]

F2. Instrumentation de laboratoire

[...]

Le capteur **tri-axial** utilisé par le laboratoire doit être fixé solidement sur la même surface et aussi près que possible des trois unités ADR testées.

5. PERFORMANCE ASSESSMENT

[...]

If the proposed system solely consists of accelerometer(s), the tests shall be performed whilst the ADR is connected to a recognised FIA logger.

Three shaker tests and one sled test shall be conducted with **the same** three ADR units each, in accordance with the test procedure presented in APPENDIX E and APPENDIX F.

[...]

5.3 Track tests (to be satisfied by each ADR unit)

<u>Upon request from the FIA</u>, the manufacturer shall validate the system in a championship selected by the FIA in a minimum of 3 cars, each for a minimum of 3 races or test sessions. [...]

E3. Minimum documentation to be provided:

- (i) [...]
- (ii) [...]
- (iii) a graph of the Power Spectral
 Density (PSD) of the recorded
 accelerations (gADRX, gADRY,
 gADRZ) against frequency as an
 overlay of the laboratory's own
 sensor measurement against the
 three ADR units measurement.

F1. Crash Pulse and Devices Installation

Minimum specification:

- (i) peak deceleration absolute acceleration 40G MIN;
- (ii) impact speed delta V 15m/s MIN;

F2. Lab instrumentation

[...]

The **tri-axis** sensor used by the laboratory must be hard-mounted to the same surface and as close as possible to the three ADR units that are being tested.

08.07.2021 Page 37 de 42

3.1 Généralités

[...]

b.Réponse à la détection d'une surface de montage ± 1000 G MIN entre 0 et 3 kHz MIN sans repliement et <u>entre</u> 1 kHz et 3 kHz MIN sans écrêtage. Le fabricant doit fournir la documentation attestant que son système respecte cette exigence (par ex. diagramme théorique ou simulation numérique).

(iii)Mesurer et enregistrer selon 3 axes orthogonaux avec la convention de signes suivante (note : la convention FIA diffère de SAE J1733 – relative à l'axe Y <u>et</u> Zuniquement) :

[...]

3.5 Alimentation électrique

[...]

19.06.2020

e. gestion de la perte d'alimentation : lorsqu'il est complètement chargé, le système doit permettre l'enregistrement d'au moins 1 événement survenant 15 s MIN après la perte d'alimentation, ou 45 s en cas d'enregistrement en continu, en l'absence de source d'alimentation externe. De plus, le système doit pouvoir achever le cycle d'écriture pour l'événement en cours ou fichier de données une fois cette période d'enregistrement terminée.

3.7 LED

[...]

<u>La LED devrait revenir à son état normal</u> <u>dès que le fichier d'accident est lu,</u> <u>téléchargé ou supprimé.</u>

La LED doit indiquer cet état lorsqu'un nouvel accident est enregistré jusqu'à ce que l'appareil soit éteint.

Lorsque l'appareil est allumé, si des accidents sont enregistrés, la LED doit afficher l'état pendant une durée de 60 secondes, puis revenir à son état normal.

3.1 General

[...]

b.Sensing response of a mounting surface ±1000G MIN between 0 and 3kHz MIN without aliasing and between 1 kHz and 3 kHz MIN without clipping. The manufacturer shall provide the relevant documentation to show that their system conforms with this requirement (e.g. theoretical flow chart or numerical simulation).

(iii)Measure and record in 3 orthogonal axes with the following sign convention (note: FIA convention is different from SAE J1733 – affecting the Y and Z axes only):

[...]

3.5 Power supply

[...]

e. power loss management: when fully charged, the system must allow logging for a minimum of 1 event occurring 15s MIN after the loss of power, or 45s if continuously recording, when no external power source is present. Furthermore, the system must be able to complete the write cycle for the current event or data file once this period of logging has concluded.

3.7 LED

[...]

The LED should return to its normal status as soon as the accident file is read, downloaded or deleted.

The LED shall indicate this status from when a new accident is stored until the device is turned off.

When the device is turned on, if any accidents are stored, the LED shall show the status for a duration of 60 seconds, then return to its normal status.

08.07.2021 Page 38 de 42

3.8 Mise à zéro (élimination des biais)

Un protocole de suppression du décalage (mise à zéro automatique) devrait être appliqué chaque fois que l'unité est alimentée de telle manière que le décalage apparent du dispositif soit inférieur à ± 1 G pour tous les axes, centrés sur : -

- <u>a)</u> <u>axe X : 0G</u>;
- **b)** axe Y: 0G;
- c) axe Z: +1G.

3.11 CAN

Le dispositif ADR doit être équipé d'une ligne CAN et respecter les exigences suivantes :

- (i) Spécification matérielle :
- a. vitesse: 1 Mbit/s;
- b. standard : <u>compatible avec 2,0a et</u> 2,0b;

3.13 Exigences relatives au logiciel PC

[...]

Toute modification des valeurs par défaut des paramètres décrits en 3.13. (v) et (vi) doit être effectuée soit par la FIA, soit par le fabricant de l'ADR avec l'approbation préalable de la FIA.

Le fabricant de l'ADR doit tenir un registre des paramètres décrits en 3.13. (v) et (vi), définis pour chaque dispositif ADR avec une référence à chaque numéro de série.

Tout dispositif dont on constate qu'il a subi de telles modifications sans l'approbation préalable de la FIA sera considéré comme non conforme à la norme.

3.8 Zeroing (bias removal)

An offset removal protocol (automatic zeroing) should be applied each time the unit is powered on such that the device reading offset be less than ±1G for all axes, centred around:

- a) X axis: 0G;
- b) Y axis: 0G;
- c) Z axis: +1G.

3.11 CAN

The ADR device shall be equipped with CAN and meet the following requirements:

- (i) hardware specification:
- a. speed: 1Mbit/s;
- b. standard: **compatible with 2.0a and** 2.0b;

3.13 PC software requirements

[...]

Any modification to the default values of the parameters described in 3.13. (v) and (vi) shall be made either by the FIA or by the ADR manufacturer, with prior approval from the FIA.

The ADR manufacturer must keep a record of the parameters described in 3.13. (v) and (vi), set for each ADR device with a reference to each serial number.

Any device which is found to have such modifications without prior approval from the FIA will be considered as non-compliant with the standard.

08.07.2021 Page 39 de 42

C.3. Canaux de données contextuelles du véhicule (à partir de CAN)

Ordre	Nom	Unité/Format	Convention de signes	Description
9	NLap	-	Positif	Numéro du tour
10	sLap	m	Positif	Distance par tour
11	vCarWheel	kph	Positif = vitesse vers l'avant Valeur absolue	Vitesse de la voiture (calculée à partir de la vitesse de roue)
12	rThrottle	%	-	Position de l'actionneur du papillon des gaz
13	aSteer	deg	Positif = virage à gauche	Angle de braquage
14	pBrakeF	bar	Positif	Pression de freinage avant
<u>15</u>	<u>pBrakeR</u>	<u>bar</u>	<u>Positif</u>	Pression de freinage arrière
<u>16</u>	nEngine	rev/min	Positif	Vitesse de rotation du moteur

Ordre des cannaux C.3. et C.4.

46 <u>17,</u> 47 <u>18,</u> 48 <u>19,</u> 49 <u>20.</u>

C.3. Context vehicle data channels (from CAN)

Order	Name	Unit/Format	Sign convention	Description
9	NLap	-	Positive	Lap number
10	sLap	m	Positive	Lap distance
			Positive = forward	Car speed
11	vCarWheel	kph	speed	(calculated from
			Absolute value	Wheel Speed)
12	rThrottle	%		Throttle actuator
12	TITITOLLIE	70	_	position
13	aSteer	deg	Positive = left-	Steer angle
13	asieei	ueg	hand-side turn	Steel angle
14	pBrakeF	bar	Positive	Front brake
14	рыакет	Dai	FOSITIVE	pressure
15	pBrakeR	har	Positive	Rear brake
<u>15</u>	polaken	<u>bar</u>	Fositive	<u>pressure</u>
<u>16</u>	nEngine	rev/min	Positive	Engine rotational
10	nLiigine	164/111111	rositive	speed

19.06.2020

19.06.2020

Channel order C.4. and C.5.

46 <u>17,</u> 47 <u>18,</u> 48 <u>19,</u> 49 <u>20.</u>

08.07.2021 Page 40 de 42

D1 input packets

Message 5

[...]

Byte	Description	Scaling	Туре
0-2	GPS date	DDMMYY	24-bit unsigned
<u>3-7</u>	Free*		
3	GPS valid*		8-bit signed
4-5	True course information Free	0.1 degree/bit	16-bit signed
6	Horizontal dilution of precision Free	0.1/bit	8-bit unsigned value
7	Number of satellites Free		8-bit unsigned value

19.06.2020

*reporting the state of the position information. See NMEA0183 for definition for values.

*It is advised to use those bytes to send GPS status information to the ADR.

Message 6

Message ID: 0x683

Message rate: f = 5Hz

Format: Big Endian

Byte	Description	Scaling	Type
0-1	Magnetic variation	0.1 degree/bit	16-bit signed
2	DGPS station ID		8-bit unsigned value
3	DGPS update time	1s/bit	8-bit unsigned value
4	FAA mode*		8-bit signed
5	Fix quality*		8-bit signed
6-7	WGS84 height above geoid	0.1m/bit	16-bit signed

^{*}See NMEA0183 for definition for values.

D1 paquets de données d'entrée

Message 5

[...]

19.06.2020	

Octet	Description	Mise à l'échelle	Туре
0-2	Date GPS	JJMMAA	24 bits non signé
<u>3-7</u>	<u>Libre*</u>		
3	GPS valide *		8 bits signé
4 -5	Informations sur le parcours réel Libre	0,1 degré/bit	16 bits signé
6	Dilution horizontale de la précision Libre	0,1/bit	Valeur non signée 8 bits
7	Nombre de satellites Libre		Valeur non signée 8 bits

^{*} signalement de l'état de l'information sur la position. Voir NMEA0183 pour la définition des valeurs.

08.07.2021 Page 41 de 42

^{*}Il est conseillé d'utiliser ces octets pour envoyer les informations de statut du GPS à l'ADR.

	Message 6 ID du message : 0x683						
	Fréquence du message : f = 5Hz Format : Big Endian						
	Format . Big Endian						
	Octet Description Mise à l'échelle		helle	Type			
	0-1	Variation magnétique	0,1 degré/l	oit	16 bits signé		
	2	ID de station DGPS			Valeur non signée 8 bits		
	3	Temps de mise à jour DGPS	1 s/bit		Valeur non signée 8 bits		
	4	Mode FAA*			8 bits signé		
	5	Qualité de correction*			8 bits signé		
	6-7	Hauteur WGS84 au-dessus du géoïde	0,1 m/bit		16 bits signé		
	* Voir NMEA0183 pour la définition des valeurs.						
	D1 paquets de données d'entrée		D1 input packets				
19.06.2020	Message 1 Octet 2 et 3 "46 8 bits non signé" [] Message 2 [] 6-7 Libre D.2. Paquets de données de sortie Message 7 6 [] Message 8 7		Message 1 Byte 2 and 3: « 16-bit "8-bit unsigned" [] Message 2 [] 6-7 Free D2 output packets Message 7 6 [] Message 8 7				
	Byte 0-1 "8.75 mdps/s/bit"		Byte 0-1 "8.75 mdps/s/bit"				
08.07.2021	3.11 CAN [] Le protocole CAN doit être conforme à celui détaillé à l'Annexe D. L'ADR peut être conçu avec des messages CAN supplémentaires avec différents ID, pour autant qu'il s'agisse de paquets de données d'entrée. Les paquets de données de sortie supplémentaires sont interdits.		3.11 CAN [] The CAN protocol shall comply with that detailed in Appendix D. The ADR may be designed with suplementary CAN messages with different IDs as long as they are input packets. Additional output packets are forbidden.				

08.07.2021 Page 42 de 42